Retrieval Augmented Generation คืออะไร

Generative AIRetrieval Augmented Generation คืออะไร



สวัสดีครับ วันนี้ผมจะพยายามสรุปเรื่อง Retrieval Augmented Generation (RAG) คืออะไร สามารถแก้ไข AI Hallucination ได้หรือไม่ ให้เข้าใจง่ายๆ นะครับ

.

คำอธิบาย RAG : Retrieval-augmented generation คืออะไร

RAG เป็นเทคนิคที่ช่วยเพิ่มความสามารถให้กับ Large Language Models (LLMs) อย่าง ChatGPT ให้ตอบคำถามได้แม่นยำและตรงประเด็นมากขึ้น โดยการดึงข้อมูลที่เกี่ยวข้องจากแหล่งข้อมูลภายนอกมาประกอบการตอบคำถาม เปรียบเสมือนการสอบแบบ open book ที่ให้ LLMs ค้นหาข้อมูลเพิ่มเติมได้นั่นเอง

.

กระบวนการทำงานของ RAG แบ่งเป็น 3 ขั้นตอนหลักๆ คือ:
1. Retrieve – ค้นหาข้อมูลที่เกี่ยวข้องกับคำถามจากแหล่งข้อมูลภายนอก
2. Augment – นำข้อมูลที่ค้นเจอมาเสริมเข้ากับคำถามเดิม สร้างเป็น prompt ใหม่
3. Generate – ป้อน prompt ใหม่ให้ LLMs เพื่อสร้างคำตอบที่ดีขึ้น

.

ข้อดีของ RAG

ข้อดีของ RAG คือช่วยลดปัญหา “hallucination” หรือการที่ LLMs สร้างคำตอบที่ฟังดูดีแต่ไม่ตรงความจริง เพราะมีข้อมูลจากแหล่งที่น่าเชื่อถือมาอ้างอิง ทำให้คำตอบแม่นยำ ทันสมัย และเกี่ยวข้องกับบริบทมากขึ้น นอกจากนี้ RAG ยังประหยัดต้นทุนและเวลากว่าการ fine-tune โมเดลใหม่ทุกครั้งที่ข้อมูลเปลี่ยนแปลง

.

ตัวอย่างการนำ RAG ไปปรับใช้กับธุรกิจ

ตัวอย่างการประยุกต์ใช้ RAG เช่น chatbots ที่ตอบคำถามลูกค้าได้ตรงใจ, ระบบสรุปรายงานอัตโนมัติ, เครื่องมือค้นหาข้อมูลอัจฉริยะ เป็นต้น ในอนาคต RAG จะยิ่งมีบทบาทสำคัญในการยกระดับ LLMs ให้ฉลาดและใช้งานได้หลากหลายมากขึ้นแน่นอนครับ

โดยสรุป RAG คือเทคนิคเสริมพลังให้ LLMs ด้วยการดึงข้อมูลภายนอกมาช่วยตอบคำถาม ทำให้ได้คำตอบที่แม่นยำ น่าเชื่อถือ และตรงบริบทยิ่งขึ้น ถือเป็นอีกหนึ่งความก้าวหน้าสำคัญของ AI ในปัจจุบันเลยล่ะครับ

.

Citations:
[1] Mitigate hallucinations with retrieval augmented generation in KNIME https://www.knime.com/blog/mitigate-hallucinations-in-llms-with-rag/
[2] Reduce AI Hallucinations with Retrieval Augmented Generation – The New Stack https://thenewstack.io/reduce-ai-hallucinations-with-retrieval-augmented-generation/
[3] How Retrieval-Augmented Generation (RAG) Helps Reduce AI Hallucinations – LinkedIn https://www.linkedin.com/pulse/how-retrieval-augmented-generation-rag-helps-reduce-ai-hallucinations-g22ac
[4] RAG Concept – VulturePrime https://www.vultureprime.com/blogs/rag-internal-knowledge

Related articles

Context Engineering คืออะไร? กุญแจสำคัญที่จะปลดล็อกศักยภาพ AI ให้เหนือกว่าแค่ Prompt

เคยสงสัยไหมว่าทำไม AI บางตัวถึงฉลาดเป็นพิเศษ? คำตอบอาจอยู่ที่ Context Engineering ศาสตร์แห่งการสร้างบริบทให้ AI ทำงานได้แม่นยำและตรงใจกว่าเดิม

สรุป Spark the Next Big Thing: อัปเดต AI ล่าสุดจาก Google Cloud Next ‘2025 ที่ธุรกิจต้องรู้

เจาะลึก session "Spark the Next Big Thing" จากงาน Google Cloud Next Extended Bangkok 2025 อัปเดตล่าสุดเกี่ยวกับ Gemini 2.5, Use Case จากธุรกิจจริง และเครื่องมือ AI ที่จะมาปฏิวัติการทำงาน

พลิกประวัติศาสตร์! OpenAI คว้าเหรียญทองคณิตศาสตร์โอลิมปิก 2025 เทียบชั้นมนุษย์

ระบบ AI ของ OpenAI สร้างประวัติศาสตร์ใหม่ คว้าเหรียญทองคณิตศาสตร์โอลิมปิก 2025 ได้สำเร็จ สะท้อนความก้าวล้ำด้านการใช้เหตุผลและความคิดสร้างสรรค์ของ AI ที่จะเปลี่ยนโฉมวงการเทคโนโลยีและธุรกิจ

เปิดตัว Grok 4, Grok 4 Heavy Model ล่าสุดจาก Elon Musk: AI ที่ฉลาดที่สุดในโลก?

เจาะลึก Grok 4 และ Grok 4 Heavy โมเดล AI ล่าสุดจาก Elon Musk ที่เคลมว่าฉลาดที่สุดในโลก พร้อมความสามารถระดับ PhD และโมเดลพรีเมียมสำหรับงานซับซ้อน

RAG คืออะไร และช่วยให้ AI ตอบฉลาดขึ้นได้อย่างไร?

ไขข้อสงสัย RAG (Retrieval-Augmented Generation) คืออะไร? เจาะลึกหลักการทำงานที่ช่วยให้ AI อย่าง ChatGPT ตอบได้แม่นยำขึ้น ลดข้อมูลมั่ว และใช้ข้อมูลล่าสุดได้จริง เหมาะสำหรับธุรกิจที่ต้องการสร้าง AI เฉพาะทาง

Related Article

Presentation Preparation Prompt

#ROLE คุณเป็นนักวิเคราะห์การตลาดระดับอาวุโส มีประสบการณ์ 15+ ปี ในการวิจัยและวิเคราะห์ตลาดสากล #INSTRUCTION จัดทำรายงานการวิเคราะห์ตลาดที่ครอบคลุมและเป็นกลาง สำหรับการตัดสินใจเข้าสู่ตลาดใหม่ #STEPS 1. รวบรวมและวิเคราะห์ข้อมูลตลาดปัจจุบัน 2. ศึกษาพฤติกรรมและความต้องการของกลุ่มเป้าหมาย 3. วิเคราะห์คู่แข่งและโครงสร้างตลาด 4. ประเมินปัจจัยความสำเร็จและอุปสรรค 5. จัดอันดับความน่าสนใจของตลาดตามเกณฑ์วัดผล 6. เสนอแนะแนวทางและทางเลือกในการเข้าสู่ตลาด #EXPECTATION รายงานการวิเคราะห์ตลาดที่: - นำเสนอข้อมูลเป็นกลาง ไม่มีอคติ - อ้างอิงแหล่งข้อมูลที่เชื่อถือได้ - ให้ภาพรวมที่ครบถ้วนและสมดุล - มีคำแนะนำที่ปฏิบัติได้จริง #EXAMPLE <MARKET_REPORT> 1. บทสรุปผู้บริหาร (≤ 200 คำ) 2. ภาพรวมตลาด (ตาราง) 3. การวิเคราะห์เชิงลึกแต่ละตลาด 4....
person holding marker

Mega Prompt – Marketing Strategy

ในบทนี้เรามาเจาะลึกกันถึงเรื่องที่กำลังฮอตฮิตติดเทรนด์สุดๆ ในวงการการตลาดกันเลยนะครับ นั่นก็คือการใช้ AI อย่าง ChatGPT มาช่วยในการวิจัยตลาดและวิเคราะห์คู่แข่งเพื่อพัฒนากลยุทธ์ทางการตลาด ก่อนอื่น ผมขอเกริ่นนำสักนิดนะครับว่า... ในยุคที่ข้อมูลท่วมท้นแบบนี้ การจะเข้าถึงและวิเคราะห์ข้อมูลให้ทันกับความเปลี่ยนแปลงของตลาดนั้น ไม่ใช่เรื่องง่ายเลย แต่ด้วยพลังของ AI อย่าง ChatGPT ที่สามารถประมวลผลข้อมูลมหาศาลได้ในเวลาอันรวดเร็ว ทำให้งานวิจัยตลาดของเราง่ายขึ้นเยอะเลยล่ะครับ! #funfacts รู้หรือไม่? ChatGPT สามารถประมวลผลข้อมูลได้มากกว่า 100 ล้านพารามิเตอร์ ซึ่งมากกว่าสมองมนุษย์ถึง 1,000...

Prompt วิเคราะห์งบการเงิน

ตัวอย่างการนำ AI มาใช้ในการวิเคราะห์งบการเงิน Prompt นี้เหมาะกับการใช้งาน Claude, Gemini Prompt #ROLE: คุณเป็นนักวิเคราะห์การเงินผู้เชี่ยวชาญที่มีความเชี่ยวชาญในการประเมินผลการดำเนินงานและความสามารถในการทำกำไรของธุรกิจ #INSTRUCTIONS: สร้างรายงานวิเคราะห์การเงินแบบครอบคลุมเพื่อประเมินผลการดำเนินงานทางธุรกิจของบริษัท โดยใช้ข้อมูลการเงินจากไฟล์ Excel ที่มีหลาย sheet และนำเสนอในรูปแบบรายงาน HTML พร้อมกราฟสำหรับนักลงทุน #STEPS: 1. อ่านและตรวจสอบไฟล์ Excel - ดูรายชื่อ sheet ทั้งหมดและระบุประเภทของแต่ละ sheet...
สอบถามข้อมูล